Methodology

Author

Melissa Ban

Procedure

  1. Get raw data from NCBI, download spreadsheet by clicking the link in supplementary information (Yin et at., 2019)
  2. Use the column of age, gender, spherical diopter (SPH) and cylinder diopter (CYL) in the spreadsheet to generate a new raw data table.
  3. Process the data to calculate the initial, final and change in SE (D) and the percent improvement of SE (%) for each patient, respectively.
  4. Plot a graph based on the percent improvement of SE (%) of each patient.
  5. Generate a null hypothesis and an alternative hypothesis for justification, then use statistical analysis (modelling and Pearson’s correlation coefficient) to find whether there is a correlation between IV (patients’ initial treatment age) and DV (percent improvement of SE (%)), then evaluate whether the relationship is statistically significant.
  6. Draw conclusions based on processed data and statistical analysis.

Data Treatment

Raw data table

Age SPH_i SPH_f CYL_i CYL_f gender
8 -2.00 -0.25 0.00 0.00 F
8 -4.25 -0.50 0.00 -0.25 F
8 -3.75 -0.75 0.00 -0.25 M
8 -1.75 -0.25 0.00 -0.25 M
8 -1.50 0.00 -0.50 -0.50 F
9 -4.50 -1.00 -1.50 -0.25 F
9 -3.50 -0.75 -0.50 0.00 F
9 -2.50 -0.25 0.00 -0.25 F
10 -1.00 0.00 0.00 -0.25 F
10 -2.25 -0.25 0.00 0.00 F
10 -2.75 -0.25 0.00 0.00 F
10 -4.00 -0.25 -0.50 0.00 F
10 -3.25 -0.50 -0.50 -0.25 M
10 -3.50 0.00 -0.75 0.00 M
10 -4.00 -1.25 0.00 -0.25 M
10 -2.00 -0.25 -0.50 0.00 M
10 -1.00 0.00 0.00 0.00 M
10 -2.25 0.00 0.00 0.00 F
10 -4.00 -0.50 0.00 0.00 F
11 -4.50 -0.50 -0.50 -0.50 F
11 -5.00 -0.25 -0.75 -0.50 M
11 -3.25 -0.75 -0.75 0.00 M
12 -2.50 0.00 0.00 0.00 F
12 -3.25 -0.50 -0.50 -0.25 M
12 -1.25 -0.25 -0.75 0.00 M
13 -5.75 -0.75 -0.75 -0.50 M
13 -6.00 -0.50 -0.50 -0.50 M
13 -4.00 -0.25 -1.50 -0.50 M
13 -1.00 0.00 -0.75 -0.50 F
14 -5.00 -0.50 -1.25 -0.25 F
14 -6.25 -0.75 -1.50 -0.25 F
14 -5.50 -0.25 0.00 0.00 M
14 -3.25 -0.25 0.00 -0.25 F
14 -3.50 -0.50 -0.50 -0.25 M

Calculations

Initial SE (D): \[SE_i = SPH_i + 1/2CYL_i\] Final SE (D): \[SE_f = SPH_f + 1/2CYL_f\] Delta SE (D) after 1 year of treatment: \[SE_d = SE_f - SE_i\] Percent improvement of SE (%): \[SE_i = SPH_i + 1/2CYL_i\]

Processed data table

Age gender SE_i SE_f SE_d SE_improve
8 F -2.000 -0.250 1.750 0.8750000
8 F -4.250 -0.625 3.625 0.8529412
8 M -3.750 -0.875 2.875 0.7666667
8 M -1.750 -0.375 1.375 0.7857143
8 F -1.750 -0.250 1.500 0.8571429
9 F -5.250 -1.125 4.125 0.7857143
9 F -3.750 -0.750 3.000 0.8000000
9 F -2.500 -0.375 2.125 0.8500000
10 F -1.000 -0.125 0.875 0.8750000
10 F -2.250 -0.250 2.000 0.8888889
10 F -2.750 -0.250 2.500 0.9090909
10 F -4.250 -0.250 4.000 0.9411765
10 M -3.500 -0.625 2.875 0.8214286
10 M -3.875 0.000 3.875 1.0000000
10 M -4.000 -1.375 2.625 0.6562500
10 M -2.250 -0.250 2.000 0.8888889
10 M -1.000 0.000 1.000 1.0000000
10 F -2.250 0.000 2.250 1.0000000
10 F -4.000 -0.500 3.500 0.8750000
11 F -4.750 -0.750 4.000 0.8421053
11 M -5.375 -0.500 4.875 0.9069767
11 M -3.625 -0.750 2.875 0.7931034
12 F -2.500 0.000 2.500 1.0000000
12 M -3.500 -0.625 2.875 0.8214286
12 M -1.625 -0.250 1.375 0.8461538
13 M -6.125 -1.000 5.125 0.8367347
13 M -6.250 -0.750 5.500 0.8800000
13 M -4.750 -0.500 4.250 0.8947368
13 F -1.375 -0.250 1.125 0.8181818
14 F -5.625 -0.625 5.000 0.8888889
14 F -7.000 -0.875 6.125 0.8750000
14 M -5.500 -0.250 5.250 0.9545455
14 F -3.250 -0.375 2.875 0.8846154
14 M -3.750 -0.625 3.125 0.8333333